Electrical Storage Technologies – Options for India

Sharath Rao, PhD 23/09/2013

Center for Study of Science, Technology and Policy, Bangalore

Why Storage?

Why Storage?

Wind in Karnataka: Seasonal and Diurnal Variations

→04-15-2011 **→**08-01-2011

Why Storage?

- Non-optimized location of generation
- Uncertain availability of generation
- Low reliability of generation
- Inadequate dispatching or scheduling control
- Deferral or avoidance of alternative upgrade in Transmission, Distribution and Generation sectors
- Energy arbitrage (peak off-peak displacement)

EPRI, 2010; Barnes & Levine, 2011

2011 Global Installed Storage Capacity for Electrical Energy

Technology	Power (MW)	Energy (GWh)
PHS	129,000	102
CAES	400-650	3.73
NaS	365.3	2.191
Li – Ion	~20	0.06
Lead Acid	~35	
Flow (VRB, ZnBr)	3	0.024

Barnhart & Benson, 2013; EPRI, 2011

~2.5% of the World installed capacity of power

Total installed capacity of power in India: ~ 225,000 MW

Mechanical - Pumped Hydro Storage System

Potential: 94,000 MW, 56 sites (CEA, 2012)

hdrinc.com

Current Installed Capacity in India: ~6,000 MW

Long Lead Time, $\eta = 80\%$, >25,000 cycles

Capital Cost – Rs 3 Crores/MW

Electrochemical - Sodium Sulphur Battery

High energy density, low maintenance, $\eta = 75\%$

Lifetime of 2,500 cycles at 100% DOD or 4,750 cycles at 80% DOD

High rate of self discharge, \$350/kWh

In India, sodium manufacturing is a major concern

Li - Ion Battery

Anode – Graphite (C)

Important class of cathode materials: $LiMn_2O_4$: electric vehicle (Chevy Volt) $LiCoO_2$: consumer electronics $LiFePO_4$: used in electric vehicles

Electrolyte – C₂H₄CO₃ & CH₃OCO₂CH₃

South America has nearly 80% of global Li reserves

Lifetime of 4,000 cycles at 100% DOD or 6,000 cycles at 80% DOD

 $\eta > 90$ %, \$650/kWh

Amount of Li metal per 100,000 cars : 480,000 Kg (Rs. 293 Crores, Li - \$100/kg)

High Cost, Overcharging protection, Overheating and Capacity Fading

Lead Acid Battery

sulphuric acid

Electrochemistry

Reaction at negative electrode: Pb (s) + HSO₄⁻ (aq) \rightarrow PbSO₄ (s) + H⁺ (aq) + 2e⁻

Reaction at cathode electrode : $PbO_2(s) + HSO_4^{-}(aq) + 3H^+(aq) + 2e^- \rightarrow PbSO_4(s) + 2H_2O(l)$

Low internal resistance and high energy to weight ratio

Sulfation, Higher operating temperatures reduce battery life, Less eco-friendly

Lifetime of 500 cycles at 100% DOD or 750 cycles at 80% DOD

 η = 90 %, \$250-300/kWh

Summary

- Cycle life data, efficiency, depth-of-discharge and life-cycle energy requirement are the critical parameters
- Ranked from least to most limited by energy requirements: PHS, Liion, NaS, PbA
- Ranked from least to most limited by material availability: NaS, PbA, PHS, Li-ion
- Ranked from least to most **expensive**: PHS, PbA, NaS, Li-ion
- Ranked from lowest to highest **life-cycle**: PHS, Li-ion, NaS, PbA

